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Executive Summary 

The scope of this project has been the development of a combined algorithm based on a wavelet adaptive 
multilevel representation (WAMR) method and a technique to rationally reduce to lower dimensions the 
differential equations that model unsteady, multi-dimensional combustion processes, known as the intrinsic 
low-dimensional manifold, or ILDM. 

We focus on problems in which there is full coupling between fluid mechanics and chemical kinetics. Such 
problems are characterized by a multiplicity of phenomena evolving over length and time scales which are 
widely disparate. In brief, the wavelet decomposition adaptively reduces the total number of unknowns in 
space, and the rational reduction, which applies ILDM theory, subsequently reduces the dimension of the 
local manifold on which the chemical reactions evolve. The first step of the method utilizes a multilevel 
wavelet collocation approximation. The multilevel structure of the algorithm facilitates the computational 
adaptation of the grid refinement according to the temporal evolution of the solution. One of the strengths of 
the adaptive wavelet collocation technique is its ability to allow high resolution computations only in regions 
where sharp variations occur. Thus, far fewer unknowns are needed for wavelets than for conventional finite- 
difference or finite-element techniques. Numerical solutions have shown the ability of the wavelet method 
to resolve localized structures, whose positions and sharpness change both spatially and temporally. In the 
ILDM phase of the computation, a local linear analysis gives the time scales associated with the reactions. 
Those processes which occur on time scales faster than a physically motivated cutoff time scale are allowed 
to relax to partial equilibrium; the remaining processes are subjected to time evolution. Consequently, the 
number of differential equations to be solved is reduced, and those that remain are significantly less stiff. 
This reduction results in a more efficient numerical method. 

We demonstrate the numerical algorithm by considering a standard ignition delay problem for a mixture 
of hydrogen/oxygen/argon in a shock tube. An operator splitting method is used to describe the reactions 
as a system of ordinary differential equations at each spatial point. The ILDM method is used to eliminate 
the stiffness associated with the chemistry by decoupling processes which evolve on fast and slow time 
scales. The fast time scale processes are systematically equilibrated, thereby reducing the dimension of the 
phase space required to describe the reactive system. The WAMR technique captures the detailed spatial 
structures automatically with a small number of basis functions thereby further reducing the number of 
variables required to describe the system. A maximum of only 300 collocation points and 15 scale levels 
yields results with striking resolution of fine scale viscous and induction zones. Additionally, the resolution 
of physical diffusion processes minimizes the effects of potentially reaction-inducing artificial entropy layers 
associated with numerical diffusion. 

To demonstrate the multidimensional capability of the WAMR algorithm, we present results for a classical 
benchmark problem: the two-dimensional lid driven cavity. The problem is studied at sufficiently large 
Reynolds numbers so that solutions using conventional numerical methods become difficult to obtain due to 
the increasing presence of multiscale structures. 

The work is not incremental in character and in fact represents a substantially new approach which we 
believe has yielded consequent dividends. While additional generalizations can and should be made to the 
algorithm, we nevertheless believe the research has set a new standard in high performance computing applied 
to combustion. In addition we believe the combined novelty and utility of the WAMR/ILDM method will 
have ramifications extending into the other areas of computational physics. 
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1    Introduction 

Here we discuss a novel wavelet adaptive multilevel representation (WAMR) algorithm combined with an 
extended intrinsic low dimensional manifold (ILDM) approach to solve challenging multiscale problems. The 
emphasis of this work is the development of a combined algorithm to rationally reduce to lower dimensions 
the differential equations that model unsteady, multi-dimensional combustion processes In particular, there 
is a focus on problems in which there is full coupling between fluid mechanics and chemical kinetics. Such 
problems are characterized by a multiplicity of phenomena evolving over length and time scales which are 
widely disparate. In brief, the WAMR algorithm adaptively reduces the total number of unknowns in 
space, and the rational reduction, which applies ILDM theory, subsequently reduces the dimension of the 
local manifold on which the chemical reactions evolve. The multilevel structure of the algorithm facilitates 
the computational adaptation of the grid refinement according to the temporal evolution of the solution. 
One of the strengths of the adaptive wavelet collocation technique is its ability to allow high resolution 
computations only in regions where sharp variations occur. Thus, far fewer unknowns are needed for wavelets 
than for conventional finite-difference or finite-element techniques. Numerical solutions have shown the 
ability of the wavelet method to resolve localized structures, whose positions and sharpness change both 
spatially and temporally. In the ILDM phase of the computation, a local linear analysis gives the time scales 
associated with the reactions. Those processes which occur on time scales faster than a physically motivated 
cutoff time scale are allowed to relax to partial equilibrium; the remaining processes are subjected to time 
evolution. Consequently, the number of differential equations to be solved is reduced, and those that remain 
are significantly less stiff. This reduction results in a more efficient numerical method. To demonstrate the 
algorithm's capabilities, we present results for a shock tube ignition delay problem and a two-dimensional 
high Reynolds number lid-driven cavity problem. We give below a brief discussion of some of the challenges 
that exist in simulating realistic combustion problems for which our algorithm is well suited. 

A typical combustion event in devices of practical importance can be described as a highly coupled process 
involving a large number of elementary chemical reactions evolving simultaneously within a complex flow 
field. It is clear in many applications that chemical kinetics affects the motion of the fluid, and moreover, 
the motion of the fluid affects the chemical kinetics. One of the key problems in theoretical combustion 
science is to generate reliable solutions to equations which model these systems. Often these models consist 
of equations representing hundreds of elementary reaction steps coupled with full compressible Navier-Stokes 
equations. Successful modeling has the potential to yield more precise design and control strategies for a 
wide variety of practical devices such as propulsion systems, internal combustion engines, incinerators, or 
furnaces. 

In the past decade, improved computer hardware has made practical the numerical modeling of processes 
with both detailed chemical kinetics and fluid mechanics. Examples, such as laminar diffusion flames, are 
discussed by, among many others, Smooke, 1991a. The kinetic schemes involved are typically quite large, 
involving hundreds of reactions and dozens of chemical species, cf. Warnatz, 1992. As discussed by Maas and 
Pope (MP), 1992b, typical reaction kinetic schemes can involve processes which evolve over widely disparate 
time scales, ranging typically from 10~9 s to 102 s. These time scales often eclipse those scales typically 
associated with fluid mechanical phenomena which are governed often by advection, diffusion, and turbulence. 
Consequently, fluid mechanics problems, which are often complicated by simultaneous phenomena occurring 
on micro- and macro-scales, are made even more daunting by the addition of chemical reactions which occur 
on both faster and slower time scales than those of the fluid mechanics. As a fully converged numerical 
solution to a set of equations requires a full resolution of all space and time scales, completely resolved 
solutions of multi-dimensional unsteady flow fields using full reaction kinetics are essentially impossible with 
existing computer hardware and will be for some time to come. 

These difficulties have motivated a widespread effort in recent years to identify ways to reduce the 
complexity of kinetic models while simultaneously retaining the flavor of the full kinetic model, cf. Smooke, 
1991b; Radhakrishnan, 1991; Frenklach, 1991; Frenklach, Wang, and Rabinowitz, 1992; Trevino and Mendez, 
1992; Goussis and Lam, 1992; Buckmaster, 1993; Lam, 1993; Maas and Pope, 1992a, 1994; Eggles and 
DeGoey, 1995; Schmidt, et al, 1996, or Vlachos, 1996. The emphases in these studies has been on problems 
which can be modeled as systems of ordinary differential equations, such as closed homogeneous reactors or 
steady wave propagation. The more challenging problems in which systems evolve in both space and time 
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have received almost no scrutiny. Such systems are well-suited for solution via a novel wavelet algorithm 
combined with an extended ILDM approach. We have recently made some inroads to this end: Rastigejev 
and Paolucci, 1999; Singh, Powers, and Paolucci, 1999; Singh and Powers, 1999; Powers, Paolucci, Rastigejev, 
and Singh 1999; Rastigejev, Singh, Bowman, Paolucci, and Powers, 2000; Singh, Rastigejev, Paolucci, and 
Powers, 2001; Rastigejev and Paolucci, 2002. We discuss these methods and the progress made in the 
following sections. 

2 General Problem Description 
Here we describe in a highly abbreviated form the set of unsteady, compressible, reactive Navier-Stokes 

equations in D (D = 1,2, or 3) spatial variables. These equations are a non-linear system of partial 
differential equations in spatial variables Xi (i = l,...,D) and time t: 

(1) 

(2) 
Ot "       '        OXj 

g-t(m) + g^.if^iyi + JO  =  °. (4) 

%r(pYn) + £-(fmiYn + J?)    =   ünMn. (5) 
at axi 

Dependent variables are density p; velocity vector u{; internal energy e; element mass fractions yi, where 
/ = 1,...,L-1, and there are L elements; species mass fractions Yn, where n = 1,...,N — L, and there 
are N species, pressure p, viscous stress Ty, energy flux J?, element flux ji, diffusive species flux J™, and 
species production rate d>n. Here Mn is the species molecular mass, and Sij is the Kronecker delta. The 
above equations describe the conservation of mass, linear momenta, energy, and element mass fractions, 
respectively, along with the time evolution of species mass fractions. The set of equations is completed when 
constitutive equations for energy, pressure, heat flux, viscous stress, and species production rates are given. 
Examples of complete formulation of these terms is standard and given, for instance by Buckmaster and 
Ludford, 1982, or Williams, 1985. 

The governing equations can be written in the form 

|u(^,t) = -Af(u(li|t))+g{u(llit)),        u,f,g e SiN+D+\ (6) 

u= (p, put, p ^e + ^^-J ,pyi,pYnJ    ■ (7) 

Here, we have defined u as a vector of length N + D + 1 dependent variables. The vector f, which can 
be written as a function of u, models the advective and diffusive fluxes of u, and the vector g represents a 
source due to chemical reaction. 

3 Operator Splitting 

Equation (6) is solved in two steps, a reaction step and a convection-diffusion step, using Strang-splitting 
(Strang, 1968) . This splitting results in second order accuracy in time. The set of partial differential 
equations is reduced to ordinary differential equations at each spatial node k by a wavelet collocation method 
to be described shortly. In the first step, we suppress advection and diffusion, and account for reaction. 
Suppression of advection and diffusion results in homogeneous equations for mass, linear momenta, energy, 
and element mass fraction which can be integrated analytically so as to leave only N - L equations to 
integrate. We then suppress reaction and solve the ODEs which account for advection and diffusion using 
the wavelet method. 



3.1 Reaction step 

In Step 1, the following equation, equivalent to that for a homogeneous premixed reactor at every point 
in the space, is solved at each spatial point 

I-*.,. w 
The first 1 + D + L equations of Equation (8) are homogeneous and can be integrated exactly to give 

P = Po       Ui = uio       e = e0       yi — yio    (/= 1, ...,L - 1). (9) 

Hence, the N - L species evolution equations in Equation (8) reduce to the following partial differential 
equations, which are treated at each point in space as ordinary differential equations with p, Uj, e, and yi 
held constant to the values given in Equation (9) every time this step is repeated: 

f = ^       (i = l,...,N-L). (10) 
at        p0 

It is noted that during a single time step the values of p0, e0, Uj0, and yi0 do not change; because of convection 
and diffusion, in general, all will change with time. 

It can be shown that ü)i can be cast in terms of Yt for i = 1,..., N — L; thus, Equations (10) are well posed 
and can be solved in their entirety by any standard implicit or explicit technique at every point in space. 
Because the equations are stiff, we can use the LSODE software package, Hindmarsh, 1983, in full implicit 
mode when solving the full set of Equations (10). Alternatively, Equations (10) can be solved using the ILDM 
method, described in a following section, which systematically removes the stiffness associated with reactions. 
When using the ILDM method, we use a simpler explicit Runge-Kutta method for time advancement, which 
is second order accurate in time. The size of the time step is dictated by the convection-diffusion time step 
restriction. 

3.2 Convection-diffusion step 

In Step 2, the following equation, which is a set of partial differential equations, is solved for the convection 
diffusion step: 

£ - ->>• '»' 
Again, Equation (11) can be solved by a variety of standard discretization techniques developed for inert 
fluid mechanics. Here we use the WAMR technique, as discussed in detail by Vasilyev and Paolucci, 1996, 
1997. The method is summarized as follows. At any given time step, the pressure, temperature, density, and 
velocity fields are projected onto a multilevel wavelet basis. The amplitudes of the wavelet basis functions 
give a measure of the importance of a particular wavelet mode. Additionally, one has available a priori 
error estimates, in contrast to most gradient-based adaptive mesh refinement techniques. All wavelets 
whose amplitude are below a defined threshold are removed. Calculations are performed for each wavelet 
whose amplitude is above the threshold (essential wavelets) and for a certain number below the threshold 
(neighboring wavelets). If at the completion of a time step, an essential wavelet has its amplitude drop 
below the threshold, it is reclassified as a neighboring wavelet or eliminated, and the neighboring region 
is adjusted; similarly, if a wavelet in the neighboring region has its amplitude become sufficiently large, it 
is reclassified as an essential wavelet, and the neighboring region is adjusted. The method is based on a 
collocation strategy using the auto-correlation functions of the Daubechies scaling function and wavelet of 
order four as bases. A linearized trapezoidal (implicit) scheme in conjunction with GMRES iterations is 
used for time advancement. The size of the time step is chosen to satisfy a CFL condition associated with 
the fastest local velocity. 



4    Intrinsic Low Dimensional Manifolds 

As noted above, each discrete point in space behaves as an adiabatic, homogeneous premixed reactor, 
thus enabling the use of the ILDM technique. The method provides a systematic way to overcome the 
severe stiffness which is associated with full models of gas phase combustion, and thus significantly improves 
computational efficiency. The ILDM method systematically eliminates the stiffness by equilibrating fast time 
scale events and describing parametrically a low dimensional manifold upon which slow time scale events 
evolve. 

Here, the method of Maas and Pope, 1992b, slightly adapted for our system, is summarized. The 
constant density, isochoric, adiabatic combustion for the homogeneous premixed system is described by 
Eq. (10). The remaining L mass fractions are computed from algebraic constraints described in full by 
Singh, et al., 2001. For gases in the mixture, which are thermally perfect, the specific internal energy of each 
component is at most a function of temperature. Hence, knowledge of the mass fractions and mass-averaged 
specific internal energy e0 allows one to use Newton's method to invert the caloric state equation to form 
T = T{Yi,..., YN-L; e0, ylo,..., y(L-i)J- Hence, üt, which is in general a function of temperature, density, 
and species mass fractions, can now be considered as a function of only N - L of the species mass fractions 

for fixed values of e0, p0, and y;0: 

Ui = Ui(Yi,...,YN-L;e0,po,yi0,...,y(L-i)o)'      i = l,...,N -L. (12) 

Both ÜJi and e{ can be easily evaluated using the Chemkin III, Kee, et al, 1990, package. Equation (10) can 
thus be rewritten as 

«I = G(Y), (13) 
at 

where Y = (Yu ..., YN„L)T and G(Y) = (^S ..., ""-^"-L). The reciprocals of the eigenvalues of 

the Jacobian GY at any point in the composition space identify the N - L associated characteristic time 
scales. The corresponding eigenvectors identify the directions in which each eigenmode of the total trajectory 
evolves in composition space. The ILDM is identified by a set of points in the composition space where the 
composition space velocity vector G is orthogonal to the eigenvectors associated with fast time scales. 

We outline here the analysis to compute the ILDM given in detail for a similar system first by Maas 
and Pope, 1992b, and later extended by Maas, 1998, following the general theory given by Golub and Van 
Loan, 1996. We choose to resolve M slow time scales; this will result in the choice of M species which will 
form part of the parameterization for the complete ILDM. This is formed via the following steps. First we 
decompose the Jacobian matrix Gy with a real Schur decomposition: 

GY = Q-U-QT, (14) 

where Q is the (N - L) x (N - L) orthogonal matrix of real Schur vectors and U is an (N - L) x (JV - L) 
upper-triangular matrix with eigenvalues along the main diagonal. Typically most eigenvalues are negative 
and real; for closed adiabatic systems near equilibrium, there is a guarantee of real negative eigenvalues. The 
matrix is ordered so that proceeding down the diagonal, the real part of the eigenvalue becomes progressively 
more negative. Thus, the eigenvalue at the bottom right is associated with the fastest stable mode. 

The above Schur decomposition, combined with the solution of a Sylvester equation allows the Jacobian 
to be written in the following form 

Gv = (Z3    Z,>(«'    N"J(g) with (gj-(Z,    *,)-'■ (1.) 

Here Zs has M column vectors, each of length N - L, which span the subspace associated with the M slow 
time scales. Further, ZF has N - L - M column vectors, each of length N - L, which span the subspace 
associated with the N - L - M fast time scales. The matrices Zs and ZF, as defined in Equation (15), have 
dimension M x (N - L) and (N - L - M) x (N - L), respectively, and are associated with the reciprocal slow 
and fast basis vectors. The matrix Ns has dimension M x M, is upper-triangular, and has as its eigenvalues 
those associated with the slow time scales. The matrix Nf has dimension (N - L - M) x (N - L - M), is 
upper-triangular, and has as its eigenvalues those associated with the fast time scales. 



For fixed energy, density, and element mass fractions, the ILDM method identifies M-dimensional sub- 
spaces (M < N — L) on which slower time scale events evolve. An ILDM which equilibrates the N — L — M 
fast time scales and consequently describes the M-dimensional manifold is given by 

ZF • G(Y) = 0, (16) 

which forms N — L — M algebraic equations. For what is effectively a complicated one-step chemistry, we 
take M — 1. 

To construct the manifold for fixed energy, density, and element mass fractions, one first determines the 
equilibrium point of the system, which is taken as the original seed value. In subsequent calculations, the 
most recently calculated point is used as the seed value. One then performs the local fast and slow subspace 
decomposition, which gives local eigenvalues and associated basis vectors for a system linearized about the 
seed value. One then perturbs N — L oi the species away from their seed values in a prescribed manner to 
form the M algebraic equations below: 

P-(Y-Y0) = <5. (17) 

Here P is a user-specified parameterization matrix of dimension M x (N — L), S is a vector of length M 
which contains a user-specified increment in the projected mass fractions, and Y0 is a vector of length 
N — L which contains the seed values of mass fractions. These M equations are solved simultaneously with 
the N — L — M algebraic ILDM equations (16) with a predictor corrector technique which uses a tangent 
predictor and a Newton's method corrector to obtain the mass fractions at a new point on the manifold. 
The process is repeated to construct the global ILDM. We adapt the parameterization matrix P to overcome 
difficulties associated with turning points of the manifold in composition space. The choice of P is based 
on a continuation method which is an extrapolation of previous points of the ILDM used to estimate the 
location of the new points. This method can also be used for computing manifolds for an adiabatic, isobaric 
system. 

With this analysis, an M-dimensional manifold can be identified in an (N — L)-dimensional composition 
space for a given set of p0, e0, j/io,... ,y(L-i)„- Thus, a different ILDM is required for a different set of 
densities, internal energies and element mass fractions. Since in general calculations one can expect all 
of these quantities to vary, the actual relevant reaction manifold which must be formed has dimension 
K = M + 1 + L and can be tabulated numerically to give 

Yi = Yi(Y1,...,YM,e,p,yu...,yL-1)       for       i = M + 1,... ,N - L, (18) 

where Y\,..., YM are the chosen reference variables for the ILDM lookup table. The reference variables are 
chosen in such a way that the ILDM is single valued with respect to these variables for easy lookup. While 
there is no guarantee of single-valuedness, in the problems studied we have found it to be the case. 

It is the dimension of the lookup table, K, which is critically important in manifold methods. Many 
previously reported calculations have been restricted to premixed conditions in the isobaric and/or adiabatic 
limits, thus reducing the dimension K. In the calculations presented here, variable energy and density are 
intrinsic features of the flow; given that we have chosen M = 1 for the hydrogen/oxygen/argon system 
discussed later (L = 3) we in principle must deal with a table which has dimension K — 5. Because we 
will study a uniformly premixed mixture, and because we employ a simplified diffusion model in which 
there is no preferential diffusion, L — 1 = 2 independent element mass fractions remain constant throughout 
the calculations, reducing the effective dimension of the manifold to K = 3. The variables of manifold 
parameterization for our hydrogen/argon/oxygen problem are chosen to be e, p, and Yn2o- in the ignition 
delay problem considered later for a mixture of hydrogen/ oxygen/argon, we use a 9 species 37 step reaction 
mechanism described in Table 1. With M = 1, a projection of the ILDM for fixed internal energy, density, 
(as well as the always fixed element mass fractions), for this system is plotted in Fig. 1 with YH2O 

used as 
the reference independent variable for the ILDM and YH2O2 as the dependent variable. Mass fractions for 
all species (not shown here) are also available as functions of YH2O f°r the same fixed internal energy and 
density. Also shown on the plot are projections of trajectories in this two-dimensional subspace for a variety 
of initial conditions. It is seen that all trajectories relax to the ILDM. As indicated on Fig. 1, the relaxation 
from the initial state to the manifold occurs on a relatively fast time scale on the order of microseconds, 
while once on the ILDM, the subsequent relaxation to final equilibrium occurs on a much slower time scale 



3 Reaction <Lj ßi Ej 

1 02 + H^OH + 0 2.00 x 1014 0.00 70.30 

2 OH + O -^02 + H 1.46 x 1013 0.00 2.08 

3 H2 + 0->OH + H 5.06 x 104 2.67 26.30 

4 OH + H -*H2 + 0 2.24 x 104 2.67 18.40 

5 H2 + OH - H20 + H 1.00 x 108 1.60 13.80 

6 H20 + H -*H2 + OH 4.45 x 108 1.60 77.13 

7 OH + OH -> H20 + 0 1.50 x 109 1.14 0.42 

8 H20 + 0-+OH + OH 1.51 x 1010 1.14 71.64 

9 H + H + M->H2 + M 1.80 x 1018 -1.00 0.00 

10 H2 + M^H + H + M 6.99 x 1018 -1.00 436.08 

11 H + OH + M -» tf20 + Af 2.20 x 1022 -2.00 0.00 

12 #20 + M->H + OH + M 3.80 x 1023 -2.00 499.41 

13 0 + 0 + M^02 + M 2.90 x 1017 -1.00 0.00 

14 02 + M -^O + O + M 6.81 x 1018 -1.00 496.41 
15 H + 02 + M -> #02 + M 2.30 x 1018 -0.80 0.00 
16 #02 + M->JH' + 02 + M 3.26 x 1018 -0.80 195.88 
17 H02 + H ^OH + OH 1.50 x 1014 0.00 4.20 
18 OH + OH — #02 + tf 1.33 x 1013 0.00 168.30 

19 tf 02 + H^H2 + 02 2.50 x 1013 0.00 2.90 

20 H2 + 02-^ H02 + H 6.84 x 1013 0.00 243.10 

21 H02 + H-+ H20 + O 3.00 x 1013 0.00 7.20 

22 H20 + 0-+ H02 + H 2.67 x 1013 0.00 242.52 

23 H02 + 0 ->OH + 02 1.80 x 1013 0.00 -1.70 

24 OH + 02^ H02 + 0 2.18 x 1013 0.00 230.61 
25 H02 + OH-> H20 + 02 6.00 x 1013 0.00 0.00 

26 H20 + 02 - H02 + OH 7.31 x 1014 0.00 303.53 
27 H02 + H02 -* H202 + 02 2.50 x 1011 0.00 -5.20 
28 OH + OH + M -» H202 + M 3.25 x 1022 -2.00 0.00 
29 H202 + M -► OH + OH + M 2.10 x 1024 -2.00 206.80 
30 H202 + H^H2 + H02 1.70 x 1012 0.00 15.70 
31 H2 + H02 -» H202 + H 1.15 x 1012 0.00 80.88 
32 H202 + H - H20 + OH 1.00 x 1013 0.00 15.00 
33 H20 + OH — F202 + F 2.67 x 1012 0.00 307.51 
34 F202 + O -» OH + H02 2.80 x 1013 0.00 26.80 
35 OH + H02 -► tf202 + O 8.40 x 1012 0.00 84.09 
36 F202 + OH ^ H20 + H02 5.40 x 1012 0.00 4.20 
37 H20 + H02 -» ff202 + OF 1.63 x 1013 0.00 132.71 

Table 1: Nine species, thirty-seven step reaction mechanism for hydrogen/oxygen/argon mixture, Maas and 
Warnatz, 1988, with corrected fH2 from Maas and Pope, 1992, also utilized by Fedkiw, et al., 1997. Units 
of a, are in appropriate combinations of cm, mol, s, and K so that w; has units of mol cm'3 s-1; units of 
Ej are kJ mol'1. Third body collision efficiencies with M are fHl = 1-00, fo2 = 0.35, and fn2o = 6.5. 
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Figure 1: ILDM projection for 9 species 37 step reaction mechanism of hydrogen/oxygen/argon combustion 
as function of YH2O at constant values of p = 0.5 kg m-3, e = 8.0 x 105 J kg~x. Element mass fractions 
fixed at yu = 0.01277, y0 = 0.10137, yAr = 0.88586. Also plotted are trajectories from full time integration 
showing relaxation to the manifold and equilibrium. The symbol 'x' denotes equally spaced 0.10 fis time 
intervals. Total time to relax to equilibrium is near 0.1 ms. 

on the order of 0.1 ms. The phase trajectories appear to cross, but this is because they have been projected 
into a lower dimensional space. 

A projection of the K = 3 ILDM for constant density and the same constant element mass fractions for 
the hydrogen/oxygen/argon system is plotted in Fig. 2, with YH2O and e used as the reference independent 
variables and YH2O2 as the dependent variable. The portion of the ILDM depicted closely corresponds 
to values realized in the ignition delay problem discussed later. Also, for the system studied here, the 
dependency of all variables on density was weak for the range of realized density values. 

Equation (13) can be solved using the ILDM method if the composition of the mixture at a given spatial 
point is close to the ILDM. One illustrative way to achieve this is to locally project Equation (13) onto the 
slow subspace: 

Zs-jY = Zs- G(Y). (19) 

This results in M ordinary differential equations and models the dynamics of reduced chemistry. In practice, 
we simply integrate M of the species equations in their original form while using the manifold to obtain all 
necessary secondary variables. 

When using ILDMs with M = 1, we need to integrate only one differential equation associated with 
the reference variable at each spatial location. If the composition is far from the ILDM, it is important to 
incorporate the off-manifold kinetics in some fashion. Here the full reaction kinetic equations are integrated 
using LSODE in implicit mode.  We switch from full integration to the ILDM method when the L^ norm 
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Figure 2: ILDM projection for 9 species 37 step mechanism of hydrogen/oxygen/argon combustion giving 
YH2o2 as a function of YH2o and e for constant p = 0.5 kg m~3. Element mass fractions fixed at yH = 0.01277, 
yo = 0.10137, yAr = 0.88586. 

between the actual mass fractions at a particular location and the corresponding projected mass fractions is 
less than 1 x 10~6. While this reduces the efficacy of the ILDM method, it is critical to avoid large phase 
errors associated with projecting onto the manifold from a remote region of phase space. In other words, 
while all processes are typically destined to reach the manifold, it is critical for the proper sequencing of 
events that they reach the manifold at the correct time, and reach the right point on the manifold. A naive 
projection can easily give plausible answers which have O(l) errors associated with them. In practice, in our 
calculations for the ignition delay problem, we find we are able to use the ILDM method in cells which have 
recently been shocked, have passed through the bulk of the induction zone, and are well within the thermal 
explosion region. The ILDM method is also applied to points in the trailing rarefaction wave. 

The convection-diffusion step is equivalent to a perturbation off the ILDM. Subsequent to the perturba- 
tion, there is a fast relaxation to the manifold corresponding to a new set of conserved variables. This is 
accomplished here by projection onto the manifold while holding the reference variable, here YH2O, constant. 
This projection is allowed by the large time scale difference between slow chemical/fluid time scales and 
fast chemical time scales as long as convective and diffusive effects are not large. We also note that for this 
hydrogen/oxygen/argon mechanism the fast directions are nearly orthogonal to the slow variable, YH2O, on 
the ILDM. A slightly more accurate alternative would be to project to the manifold in the direction of the 
vectors associated with the fast eigenmodes. In contrast to many implementations of the ILDM method 
for partial differential equations, which are often confined to a single adiabatic, isobaric ILDM, we convect 
and diffuse all variables, not just slow variables associated with the ILDM. While this comes at a cost of 
solving more equations, it is necessary to preserve the consistency of the Strang operator splitting method. 
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Alternatively, for our problem, which is neither adiabatic, isobaric, or isochoric, we could choose to incur 
the extra expense of tabulating the slow and fast subspaces associated with changes in energy and density 
and then convect and diffuse just slow variables. 

5    Wavelet Adaptive Multilevel Representation (WAMR) 

Much of the material of this section builds on Vasilyev and Paolucci, 1995, 1996, 1997 and is described 
more fully in Rastigejev and Paolucci, 1999, 2002. 

5.1 Bases and Wavelet Approximation 

Wavelet analysis is a new numerical concept (cf. Daubechies, 1992; Meyer, 1990), which allows one to 
represent a function in terms of basis functions, called wavelets, which are localized in both location and scale. 
The Daubechies autocorrelation functions and boundary-modified Daubechies autocorrelation functions (see 
Saito and Beylkin, 1993) of order p have been used as elements for the construction of basis functions. If 
(p(x) is the Daubechies scaling function of order p (p coefficients in the dilatation equation and corresponding 
to p/2 vanishing moments) then (f>(x) = /_ °° <p(y — x)ip(y)dy is the Daubechies autocorrelation function of 
order p having p vanishing moments. In addition, following Donoho, 1992, we use the following definition 
for the wavelet: 

i>(x) = <j>(2x - 1). (20) 

For this wavelet basis, the algorithm for finding wavelet expansion coefficients reduces to the use of simple 
Lagrange interpolation (see Saito and Beylkin, 1993, and Dubuc, 1986). 

Now any continuous function f{x) defined in a finite domain may be approximated within a prescribed 
accuracy (for L large enough) by 

L 

PLf(x) = J2 fk<t>{x - k) + J2 E di,*W'x - k). (21) 
k 1=0    k 

Left and right boundary-modified scaling functions can be constructed to span the finite domain but we do 
not write them here (see Rastigejev and Paolucci, 1999). 

5.2 Sparse Wavelet Approximation and Irregular Grid 

The spatially adaptive collocation grid is especially well tailored for strongly time-dependent problems. 
The method incorporates the dynamically adaptive multilevel algorithm of Liandrat and Tchamitchian, 
1990. The adaptation is achieved by retaining only those wavelets whose amplitudes are greater than a given 
threshold. Thus, high resolution computations are carried out only in those regions where sharp transitions 
occur. In order to make the wavelet approximation of a function efficient (i.e. to use the smallest possible 
number of wavelet modes) while at the same time retaining the accuracy of the representation, we introduce 
the sparse wavelet representation by thresholding the wavelet coefficients. The approximation can be split 
into two parts which are composed of wavelets whose amplitudes are above and below a specified threshold 
e: 

PLf(x) = P^f(x) + P^f(x), (22) 

where 
L 

P>/(*) = $Z/o,*0o,fc(a:) + X)    53    diiki>i,k(x), (23) 
k 1=0 k,\dl-k\>€ 

L 

P</(*)=E    E    di,k1>iA*)- (24) 
1=0 fc,|d,,fc|<£ 
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We now call P>/(» the sparse wavelet representation of the function f(x), and we call the corresponding 
wavelets used in the representation essential wavelets. In this representation, if a wavelet is omitted, so is 
the corresponding collocation point. This compression results in the irregular grid G>. 

5.3    Time Integration Algorithm 

After the operator splitting and application of the wavelet discretization in space, Equation (11) reduces 
to a system of ordinary differential equations (ODEs): 

It = F(u), (25) 

where u is a vector of dependent variables defined on the nonuniform collocation grid, and F represents 
the discretization of the convection and diffusion terms. Spatial derivatives are approximated by use of the 
Lagrange polynomial corresponding to the wavelet basis evaluated at collocation points. 

To integrate this system, we use the linearized trapezoidal method to obtain the following system of 

linear algebraic equations: 
A(n)Au(n+l) = b(n)s (26) 

where A<n> = (I - f J(n)), Au("+" = u<n+1) - u<">, b<n> = f [F (t(n+1',uw) + F (tw,uW)], I is the 
identity matrix and J = 9F/9u is the Jacobian matrix. 

In order to take advantage of the sparseness of matrix A(n), as well as the fact that Au(n+1) is small, the 
system of algebraic equations is solved by using a multiscale Schwarz-type domain-decomposition method 
which utilizes a multigrid-type iteration cycle for solving the above linear problem. First the hierarchy of 
grids are projected to the physical domain and they are subsequently decomposed into multiple disjoint 
subsets consisting of grids of different size as shown in Figure 3. The next step consists of the solution of 

G2 G, G2 G, G4 

(•—♦—►}-+«—-*-}—<•—-) h •-} • 

Figure 3: Iteration procedure. 

the linear system on these disjoint domains using a multigrid-type iteration cycle on every subset (linear 
subsystem). Since the problem is often stiff on the finer grids, the GMRES method is used as the basic 
iteration algorithm (see Saad and Schultz, 1986). The method has potential for additional development and 
improvement. 

A typical cycle is illustrated in Figure 4 where Gi and G4 correspond to the finest and coarsest grid 
subsets, respectively. The number of unknowns in each subset is approximately the same, so that in this 
example each subset would contain approximately one-fourth of the total number of grids. Typically the 
cycle starts from the finest grid subset. The residual tolerance is decreased on every successive branch of the 
cycle. We note that the number of iterations required to satisfy the tolerance drops rapidly. To improve the 
performance, a reasonable (but not very accurate) initial guess of the solution is used. Two alternatives have 
been tried. In one, the initial guess is obtained by solving exactly the linear tridiagonal system resulting 
from a three point finite-difference derivative spatial approximation. In the other, we use the initial guess 

A   (n+i) - / Au(n)> if the grid has not changed, ^7) 
U ~~ [ I (Au'n+1') ,    if the grid has changed, 

where we define Au(0) = 0, and I is the wavelet interpolation operator which interpolates from the nonuni- 
form old grid to the nonuniform new grid. 

5.4    Dynamically Adaptive Algorithm 
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Figure 4: Iteration procedure. 

In order to resolve all structures appearing in the solution of the problem as time evolves, we need 
to adapt the sparse wavelet representation in time. To accomplish this, at any time we need to save the 
amplitudes of essential wavelets and the amplitudes of wavelets in the neighboring region, i. e. those wavelets 
which are near the essential wavelets in location and scale. Essential and neighboring wavelets constitute 
the group of active wavelets. The irregular grid G> is composed of collocation points corresponding to all 
active wavelets at any given moment of time. 

The numerical algorithm for solving the system of ODEs may be summarized as follows: 

1. integrate the ODEs to obtain the approximate solution u^n+1) on the irregular grid G>   by using u^n' 
as initial conditions; 

2. obtain the new grid G^+1) based on the magnitudes of wavelet coefficients of u(n+1) and accounting 
for the new neighboring region; 

3. if G^+1' = G>   we increment time and go back to step 1, otherwise compute the values of u(n+1) at 

the new collocation points in G>      , then increment time and go back to step 1. 

The dynamically adaptive wavelet collocation algorithm is ideally suitable for handling problems with 
localized structures, which might occur intermittently anywhere in the computational domain or change 
their locations and scales in space and time. The implementation of conventional adaptive algorithms is very 
costly due to the possibility of grids varying drastically within a short time interval. The use of conventional 
algorithms on a uniform grid is impractical. Thus, the main advantage of the dynamically adaptive wavelet 
collocation algorithm is that it requires a far fewer number of unknowns than the other algorithms, when 
applied to problems with a great range of spatial scales. In addition, the computational grid can be refined 
locally to an arbitrary small size. We emphasize here that the adaptation of the computational grid does 
not require additional efforts and consists merely in turning on and off wavelets at different locations and 
scales. Moreover, the algorithm exhibits an exponential convergence on the unevenly spaced mesh. The 
computational cost is independent of the spatial dimensionality and is 0(Jv), where Alis the total number 
of collocation points. This computational efficiency is possible by virtue of the Fast Wavelet Collocation 
Transform (see Vasilyev and Paolucci, 1997). Another important property of the algorithm is that the 
relative error is actively controlled by prescribing a resolution threshold parameter. All of these features 
make this algorithm a very attractive candidate for tough combustion problems. 
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6    Results 
We describe here two representative problems that highlight the strengths of the WAMR/ILDM algo- 

rithm. In the first subsection we discuss in detail a one-dimensional reactive flow with realistic chemistry. 
In the second, we give a briefer discussion of results from a benchmark two-dimensional problem at large 
Reynolds numbers. 

6.1    Ignition delay in a shock tube 
We describe the classical hydrogen-oxygen-argon shock tube ignition delay problem. This is a common 
benchmark problem for both experiments and computations. Here we consider an extension to the well- 
documented case considered by Fedkiw, et al, 1997, and fully described by Singh, et al, 2001. We consider 
a shock tube of length 0.12 m filled initially with H2, 02, and Ar in a 2/1/7 molar ratio. For 0 < x < 0.06 m, 
the gas is taken to be at p = 0.18075 kg m"3, u = 487.34 m s~\ and p = 35.594 kPa. For 0.06 < x < 0.12 m, 
the gas is at p = 0.072 kg m~3, u = 0 m s~\ and p = 7.173 kPa. This state is consistent with Rankine- 
Hugoniot jump conditions for the inviscid equivalent of Equation (6). Knowledge of these parameters allows 
determination of all other dependent variables at t = 0 s through the use of the governing equations. At 
x = 0.12 m, we consider a boundary which is closed and adiabatic. Consequently u = 0 m s_1, and 
additionally diffusive mass and energy fluxes J™ (n = 1,... ,N), and Jq must be zero. At x = 0 m, we 
allow inflow conditions of u = 487.34 m s~\ p = 0.18075 kg m"3, p = 35.594 kPa. The lead shock wave is 
of insufficient strength to ignite the material on time scales of interest. When the lead shock encounters a 
wall, a stronger shock reflects, and leaves the mixture at a sufficiently elevated temperature so that reaction 
soon ensues. After a brief ignition delay, significant reaction commences at the reflecting wall, generating 
a detonation wave which overtakes the reflected shock. Fedkiw, et al, 1997, model this process with one- 
dimensional reactive Euler equations, assuming a mixture of ideal gases with variable specific heats are 
reacting in a thirty-seven step reaction mechanism in the presence of nine species. 

We have first reproduced Fedkiw, et al.'s, 1997, results using an identical model and technique. It is 
a simple step to extend these results to incorporate the ILDM technique. We have generated ILDMs for 
the entire range of energies and densities encountered in this problem. Additionally, we have extended the 
model to include the effects of mass, momentum and energy diffusion and generated results using the WAMR 
technique for spatial discretization. Use of the ILDM closely replicates the full solution. 

Results for the shock tube calculations are given here. Figure 5 gives predictions of temperature, velocity, 
pressure, and density vs. distance at time t = 195 ps. At this time, the lead right-traveling inert shock has 
reflected off the right wall and is propagating to the left with its head near x = 0.065 m at a pressure and 
temperature of 118.8 kPa and 1196 K, respectively. Close behind the lead shock is the much stronger, 
left-propagating ZND detonation wave, with its head near x = 0.072 m. All of the usual salient features of a 
ZND detonation are predicted here. The von Neumann spike is predicted at a pressure of around 450 kPa, 
and the pressure relaxes to near 200 kPa at the right boundary. The post-detonation temperatures are near 
2500 K, and the velocity is seen to relax to a value of zero at the right boundary. 

The solid lines show the predictions of the full chemical kinetics model. The dots show the results 
of the calculations using the ILDM resolving one reaction time scale; this can be interpreted as one-step 
chemistry with a rational fidelity to full chemical kinetics. It is seen on this scale that the predictions are 
nearly identical! Examination of the local eigenvalues indicates that use of the manifold suppresses temporal 
resolution of reaction events which occur faster than a roughly 0.1 ps time scale. For a given p and e, we 
construct the ILDM using adaptive parameterization as described by Maas, 1998. This is done for sixteen 
values of p ranging from 0.25 kg m-3 to 1.00 kg m~3 in steps of 0.05 kg m~3. Similarly we use nineteen values 
of e ranging from 0.5 x 105 J kg'1 to 9.5 x 105 J kg'1 in steps of 0.5 x 105 J kg-1. Hence 304 slices such as 
shown in Figure 1 were constructed. Finally each ILDM was stored with an equally spaced parameterization 
of 100 values of YH2O for easy lookup. Thus, the ILDM lookup table has a size of 16 x 19 x 100. 

The effects of diffusion are clearly seen when one examines finer length scales. Figure 6 shows two views 
of pressure vs. distance at a somewhat later time, t = 230 ps, by which time the detonation wave has 
overtaken the reflected shock. In the view on the left, the same length scale is shown as in Fig. 5. The view 
on the right shows a 120 factor spatial magnification near the lead shock. In this figure the dots represent 
the actual collocation points as chosen by the WAMR technique.   It has been found that fifteen levels of 
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Figure 5: Predictions of temperature, velocity, pressure, and density vs. distance at t = 195 /zs using a 
maximum of 300 collocation points, 15 scale levels for full chemical kinetics (solid lines) and ILDM kinetics 
(dots) for viscous hydrogen/oxygen/argon detonation. 
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Figure 6: Predictions of pressure vs. distance for HilOijAr ignition delay at t = 230 /is on coarse and fine 
length scales demonstrating the spatial resolution of viscous and induction zone structures. 
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wavelets (equivalent to 215 uniform grids) are sufficient to achieve the desired accuracy. Moreover, because 
of the adaptive nature of the method, only three hundred collocation points at most are necessary to achieve 
this detail! It is clear on this scale that both the viscous shock and chemical induction zones have been 
resolved. Here it is predicted that the shock is essentially inert and has a thickness of roughly 50 pm. 

The induction zone, a region of essentially constant pressure, temperature, and density, has a thickness 
of roughly 470 /zm. In the induction zone many reactions are actively occurring, giving rise to a release of 
energy which, because of the extreme temperature sensitivity of reaction rates, accumulates to an extent 
that a thermal explosion occurs at the end of the induction zone. While the wavelet representation certainly 
has captured these thin layers, it is noted that because it was chosen not to use individual species mass 
fractions as part of the adaption criteria, some finer scale reaction zone structures have not been spatially 
resolved. 

In the process of understanding the time scales associated with the kinetics of a spatially homogeneous 
mixture, we have computed all time scales through an eigenvalue analysis. This analysis indicates that 
reaction time scales as small as sub-nanosecond are predicted by the standard models of Maas and Warnatz, 
1988, and Maas and Pope, 1992. Such small time scales give rise to small reaction-induced spatial scales 
which violate the continuum assumption. It is essentially for this reason that we are not adapting our spatial 
grid to capture the subsequent extremely fine length scales associated with individual species mass fraction 
variation. This issue is pervasive in most calculations involving detailed chemical kinetics, but it is not often 
addressed since standard spatial discretization algorithms are unable to resolve this range of scales. 

For this particular problem, use of the full integration technique requires three times as much compu- 
tational time as the ILDM technique. We note however that general conclusions regarding computational 
efficiency are difficult to draw as the savings realized will be model-dependent as well as initial condition- 
dependent. The bulk of our savings are realized as more and more cells become chemically activated. At the 
beginning of the calculation, when most cells are in a cold state far from equilibrium, there is no savings. 
The calculation itself took roughly ten hours on a 330 MHz Sun UltralO workstation. 

Figure 7 shows results for the species mass fractions at t = 195 /is. Steep gradients in mass fractions 
are predicted near the detonation front. As expected, H02, H, and H202 mass fractions have relatively 
small values which peak at the detonation front. Under these conditions, the major product is H20. On the 
length scales shown in Figs. 5 and 7, the results appear very similar to the inviscid predictions of Fedkiw, et 
al, 1997. 

Figure 8 demonstrates the adaptive nature of the WAMR technique. It shows the distribution of colloca- 
tion points and their scale levels, 2~j,j = 0,..., 14, at two different times, first at t = 180 /xs, when the lead 
shock and the approaching detonation are present, and later at t = 230 /is, after they have merged. In both 
cases, at most three hundred collocation points and fifteen wavelet scale levels were sufficient to capture the 
flow features to the prescribed dimensionless error tolerance of 10~3. Moreover, it is clear that the algorithm 
adapts to the features of the flow. 

As discussed by Menikoff, 1994, inviscid codes introduce pseudo-entropy layers near regions of wave-wave 
and wave-boundary interactions. These often appear as O(l) anomalies in temperature and density near the 
wall in shock tube predictions. Figure 9 shows the results of our viscous calculation in a spatial zone near 
the wall just after shock reflection.    On this scale, there is no apparent entropy layer near the wall. 

A finer scale examination of the dependent variables, shown in Figure 10, reveals what is happening. 
It is evident from the temperature plot that there is a small entropy layer near the wall, here physically 
induced. The physical diffusion mechanisms rapidly smear the layer within a few microseconds. It may be 
possible that the correct capturing of a temperature-sensitive ignition event near a wall could be critically 
dependent on having the correct physics in the model. For the viscous calculation, a temperature rise of 
roughly 5 K is predicted. Performing a similar calculation with an inviscid Godunov-based model with 
first order upwind spatial discretization near regions of steep gradients using 400 evenly spaced grid points 
induces a temperature rise of nearly 20 K, which persists. It might be expected that numerical diffusion 
would dissipate this temperature spike. However, as detailed by LeVeque, 1992, the leading order numerical 
diffusion coefficient for such methods is proportional to the local fluid particle velocity. As the fluid particle 
velocity at the wall and in the region downstream of the reflected shock is zero, the effects of numerical 
diffusion here are at most, confined to higher order. This temperature rise, similar to that obtained by 
Fedkiw et al, 1997, 1999, has been obtained by effectively imposing an adiabatic boundary condition done 
through extrapolation. This type of condition is inconsistent with the inviscid governing equations. 

16 



H2 

■« 

0              0.05 0.1 

0.1 
H20 

0.05 

0.05 0.1 
x10' 

5 H02 

k 
0 0.05 0.1 

x(m) 
0.05 0.1 

x(m) 
0.05 0.1 

xfrrO 
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6.2    Lid-driven cavity 

Here results are presented for a standard benchmark flow using the WAMR algorithm: a lid-driven fluid in a 
square cavity. In this problem, a fluid is confined in a square cavity. Three of the walls are stationary, while 
one wall has a constant velocity. In order to satisfy the no-slip boundary condition at all surfaces, the fluid 
is driven into rotational motion. As the Reynolds number is increased, more and more complex structures 
of different scales are generated in the flow field; such a flow is thus a good candidate for study with the 
WAMR technique. We compare our results with the widely cited study of Ghia, et al, 1982, who considered 
a finite difference solution of precisely the same problem using multigrid methods in which the finest grid 
was equivalent to a 257 x 257 uniformly spaced computational grid. 

The dimensionless, unsteady, two-dimensional, incompressible Navier-Stokes equations are adopted as a 
model: 

(28) 

(29) 

(30) 

In these equations independent variables are Cartesian coordinates x and y, and time t. Dependent variables 
are x-velocity u, y-velocity v, and pressure p. The only parameter is the Reynolds number, Re. 

In applying the WAMR technique to this problem, the dependent variables are projected onto a wavelet 
basis extended to two-dimensions. Many of the same techniques discussed for one-dimensional methods apply 
here as well, and will not be discussed. Because of the two-dimensional nature of the flow however, it was 
necessary to develop a robust computational algorithm for computing derivatives on a non-uniform stencil. 
Further, a fast Poisson solver was developed to solve for the elliptic equation for pressure that was necessary 
to solve at every time step. Dynamic memory allocation was utilized for fluctuating storage requirements. 

Results at Re = 10000, the highest Reynolds number in the published literature for which results exist, 
are shown in Figures 11, 12, and 13, at early stages of the flow development, at t = 4,12,100, respectively. 
It is noted that the asymptotic flow is oscillatory. Each of these figures gives a plot of the velocity vector 
field. It is important here to highlight the transitory portion of the development so that the adaptive nature 
of the method can be observed. In these figures, a velocity vector is affixed to the location of each wavelet. 
Figure 11 shows a prominent starting vortex, and there is a high concentration of wavelets in regions of steep 
gradients of the flow. In all of the calculations reported, five wavelet levels have been utilized. The coarsest 
set of wavelets gives results equivalent to a 16 x 16 grid and the finest is equivalent to at 256 x 256 grid, and 
is an equivalent resolution as Ghia, et aVs finest grid. Figure 12 gives a snapshot at a later time when the 
primary vortex has convected and diffused further into the cavity. Once again, it is obvious that the wavelet 
collocation points have adapted to the changing nature of the flow. Figure 13 shows results at a much later 
time. Here, careful examination (not shown here) reveals that recirculation zones in the corners have been 
predicted. 

Results at a lower Reynolds number, Re = 3200, are shown in Figure 14. Because of the lower Reynolds 
number, the fluid has relaxed to a steady state at the depicted time of t = 100. Figure 15 depicts the 
u component of velocity as a function of y for x = 0.5. The results from the WAMR are in very good 
agreement with published results of Ghia, et al. Moreover, we believe our results are actually more accurate 
since Ghia et al. found it necessary to use upwind differencing for convective terms to stabilize the numerical 
computations. As is well known, the use of upwind differencing introduces numerical diffusion into the 
solution. Figure 16, similar to Figure 15, depicts the v component of velocity as a function of x for y = 0.5. 
Again the results are very close to those of Ghia, et al. at the scale shown in the figure. 

7    Conclusion 

The essential goals of this research project have been achieved. Significant progress has been made in 
the development of both the method of intrinsic low dimensional manifolds as well as the wavelet adaptive 
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Figure 11: Velocity vector field and collocation points for lid-driven cavity, Re = 10000, t = 4. 
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Figure 12: Velocity vector field and collocation points for lid-driven cavity, Re = 10000, t = 12. 

multilevel representation algorithms. The methods have successfully been employed on challenging multiscale 
problems in reactive and multidimensional inert flows to predict results which have met or exceeded existing 
published standards. 

The work is not incremental in character and in fact represents a substantially new approach which we 
believe has yielded consequent dividends. While additional generalizations can and should be made to the 
algorithm, we nevertheless believe the research has set a new standard in high performance computing applied 
to combustion. In addition we believe the combined novelty and utility of the WAMR/ILDM method will 
have ramifications extending into the other areas of computational physics. 
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Figure 13: Velocity vector field and collocation points for lid-driven cavity, Re = 10000, t = 100. 
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Figure 14: Velocity vector field and collocation points for lid-driven cavity, Re = 3200, steady state results. 
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Figure 15: Comparison of midplaiie (x = 1/2) u with Ghia, et aVs, 1982, results for lid-driven cavity at 
Re = 3200. 

V-vdocity along y = 0.5, Re = 3200 
 1 1 1 1 1-     ' 

- ^o.-;■■  

0     :        :   °o:  :  

i 
O   WAMR      | 
+   Ghia et al I 

::!'::.:■.:z% 
 ' < 

o 
o : 

 ■■'\s- 

0 0 1 0 2 0 3 0 4 0 5 0 6 0.7 0.8 0.9 
x -coordinate 

Figure 16:  Comparison of midplane (y = 1/2) v with Ghia, et al.% 1982, results for lid-driven cavity at 
Re = 3200 
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